If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2y^2-14y+20)/(y^2+5y-14)=0
Domain of the equation: (y^2+5y-14)!=0We multiply all the terms by the denominator
We move all terms containing y to the left, all other terms to the right
y^2+5y!=14
y∈R
(2y^2-14y+20)=0
We get rid of parentheses
2y^2-14y+20=0
a = 2; b = -14; c = +20;
Δ = b2-4ac
Δ = -142-4·2·20
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-6}{2*2}=\frac{8}{4} =2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+6}{2*2}=\frac{20}{4} =5 $
| 2(5x+23)=-3x-9 | | 36x^2+121x=0 | | 0.01=0.75^n | | 3x2-243= | | 5x=12+3x+13 | | 3x^2-44=-41 | | X^2+6x=12x | | X^2+3x=-7x | | (E2+E+1)y=0 | | -58x^2-443=134 | | 498x^2-78=-78 | | -239x^2-43=79 | | z/8+7=8 | | -4x+5=-x+15 | | -780x^2-72=-72 | | 753x^2+199=242 | | -885x^2-347=-295 | | 56y^2-168=0 | | 17x+135=526 | | 10y^2+60y+80=0 | | 4^(3x+2)=5 | | 98x=2x | | 8=8000000000000000000000000o | | m+4+9*7m=87m | | (x+6)÷x=x | | x+x1+2+78=254 | | 6^4x-2=7^9x-3 | | 5(3x-1)=15x | | X/x-5=3/4 | | 4x×-3=11 | | 5o+4o+55o/o*9o=o+o+o+o+o+5o | | P=73p-25 |